Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 23
1.
Vet Parasitol Reg Stud Reports ; 50: 101017, 2024 05.
Article En | MEDLINE | ID: mdl-38644040

Rhipicephalus (Boophilus) microplus causes considerable livestock production losses. Knowledge of the traits that influence tick resistance contributes to the development of breeding strategies designed to improve herd productivity. Within this context, this study evaluated the resistance of Caracu, a tropically adapted cattle breed, to R. microplus. Tick count, hair length, coat thickness, and coat color were evaluated in 202 naturally tick-infested females (cows and heifers) over a period of 18 months. Blood samples were collected from all animals during the winter season for hematological analysis. Data were analyzed using Pearson correlations, generalized linear models, and principal component analysis. Correlation coefficients of tick count with coat color, coat thickness, and hair length were estimated within each season. Hematological parameters were only included in the winter season analysis and were analyzed by the restricted maximum likelihood method using log-transformed data. No differences in blood parameters were observed between animals with and without ticks. However, tick count was negatively correlated with erythrocytes (-0.29) and hematocrit (-0.24) and positively correlated with mean corpuscular hemoglobin (0.21) and mean corpuscular hemoglobin concentration (0.25). These findings suggest that higher tick counts lead to a decrease in erythrocytes but also to an increase in the amount of hemoglobin per erythrocyte, which could reduce the damage caused by low erythrocyte levels due to tick hematophagy, delaying or preventing anemia. Although tick infestation on pasture was demonstrated by the infestation of all staff members during herd management, none of the animals exhibited high tick counts, providing evidence of resistance of Caracu animals to R. microplus. Tick infestation was influenced by age class (cows > heifers), season (spring and summer > fall and winter), coat thickness (>1.5 mm > <1.5 mm), and hair length (>6 mm > <6 mm). Three components were extracted by principal component analysis, which accounted for 69.46% of data variance. The findings of this study will contribute to the development of efficient strategies aimed at reducing economic losses due to tick infestation and could be applied in animal breeding to select for tick resistance traits, reducing chemical control strategies and consequently improving sustainable livestock production.


Cattle Diseases , Rhipicephalus , Tick Infestations , Animals , Cattle , Tick Infestations/veterinary , Tick Infestations/parasitology , Female , Cattle Diseases/parasitology , Rhipicephalus/physiology , Seasons , Hair/parasitology , Age Factors , Disease Resistance , Animal Fur , Tropical Climate
2.
Vet Parasitol ; 323: 110047, 2023 Oct 07.
Article En | MEDLINE | ID: mdl-37857178

This study aimed to identify genomic regions, pathways, and putative candidate genes associated with resistance to gastrointestinal nematode in Santa Ines sheep. The phenotypic information comprised 5529 records from 1703 naturally infected animals. After genomic data quality control, 37,511 SNPs from 589 animals were available. The weighted single-step approach for genome-wide association study was performed to estimate the SNP effects and variances accounted by 10-SNP sliding windows. Confirming the polygenic nature of the studied traits, 20, 22, 21, and 19 genomic windows that explained more than 0.5% of the additive genetic variance were identified for fecal egg counts (FEC), Famacha© (FAM), packed cell volume (PCV), and total plasma protein (TPP), respectively. A total of 81, 122, 106, and 101 protein-coding genes were found in windows associated with FEC, FAM, PCV, and TPP, respectively. Several protein-coding genes related to the immune system and inflammatory response functions were identified within those genomic regions, such as ADCY9, ADRB2, BRAF, CADM1, CCL20, CD70, CREBBP, FNBP1, HTR4, IL16, IL22, IL26, MAPK8, NDFIP1, NLRC3, PAK5, PLCB1, PLCB4, ROCK1, TEK, TNFRSF12A, and VAV1. Functional enrichment analysis by DAVID tool also revealed many significant (P < 0.05) pathways and Gene Ontology terms that could be related to resistance to gastrointestinal nematode in Santa Ines sheep, such as chemokine signaling pathway (oas04062), cAMP signaling pathway (oas04024), cGMP-PKG signaling pathway (Oas04022), platelet activation (Oas04611), Rap1 signaling pathway (oas04015), and oxidoreductase activity, acting on paired donors, with incorporation or reduction of molecular oxygen (GO:0016705). These results contribute to improving the knowledge of the genetic architecture of resistance to gastrointestinal nematode in Santa Ines sheep.

3.
Anim Genet ; 54(3): 271-283, 2023 Jun.
Article En | MEDLINE | ID: mdl-36856051

This study aimed to assess the impact of differential weighting in genomic regions harboring candidate causal loci on the genomic prediction accuracy and dispersion for growth and carcass-related traits in Nelore cattle. The dataset contained 168 793 phenotypic records for adjusted weight at 450 days of age (W450), 83 624 for rib eye area (REA), 24 480 for marbling (MAR) and 82 981 for subcutaneous backfat thickness (BFT) and rump fat thickness (RFT). The pedigree harbored information from 244 254 animals born between 1977 and 2016, including 6283 sires and 50 742 dams. Animals (n = 7769) were genotyped with the low-density panel (Clarifide® Nelore 3.0), and the genotypes were imputed to a panel containing 735 044 markers. A linear animal model was applied to estimate the genetic parameters and to perform the weighted single-step genome-wide association study (WssGWAS). A total of seven models for genomic prediction were evaluated combining the SNP weights obtained in the iterations of the WssGWAS and the candidate QTL. The heritability estimated for W450 (0.35) was moderate, and for carcass-related traits, the estimates were moderate for REA (0.27), MAR (0.28) and RFT (0.28), and low for BFT (0.18). The prediction accuracy for W450 incorporating reported QTL previously described in the literature along with different SNPs weights was like those described for the default ssGBLUP model. The use of the ssGWAS to weight the SNP effects displayed limited advantages for the REA prediction accuracy. Comparing the ssGBLUP with the BLUP model, a meaningful improvement in the prediction accuracy from 0.09 to 0.63 (700%) was observed for MAR. The highest prediction accuracy was obtained for BFT and RFT in all evaluated models. The application of information obtained from the WssGWAS is an alternative to reduce the genomic prediction dispersion for growth and carcass-related traits, except for MAR. Furthermore, the results obtained herein pointed out that is possible to improve the prediction accuracy and reduce the genomic prediction dispersion for growth and carcass-related traits in young animals.


Genome-Wide Association Study , Models, Genetic , Cattle , Animals , Genome , Genomics/methods , Phenotype , Genotype , Polymorphism, Single Nucleotide
4.
Anim Genet ; 54(3): 254-270, 2023 Jun.
Article En | MEDLINE | ID: mdl-36740987

Further characterization of genetic structural variations should strongly focus on small and endangered local breeds given their role in unraveling genes and structural variants underlying selective pressures and phenotype variation. A comprehensive genome-wide assessment of copy number variations (CNVs) based on whole-genome re-sequencing data was performed on three Brazilian locally adapted cattle breeds (Caracu Caldeano, Crioulo Lageano, and Pantaneiro) using the ARS-UCD1.2 genome assembly. Data from 36 individuals with an average coverage depth of 14.07× per individual was used. A total of 24 945 CNVs were identified distributed among the breeds (Caracu Caldeano = 7285, Crioulo Lageano = 7297, and Pantaneiro = 10 363). Deletion events were 1.75-2.07-fold higher than duplications, and the total length of CNVs is composed mostly of a high number of segments between 10 and 30 kb. CNV regions (CNVRs) are not uniformly scattered throughout the genomes (n = 463), and 105 CNVRs were found overlapping among the studied breeds. Functional annotation of the CNVRs revealed variants with high consequence on protein sequence harboring relevant genes, in which we highlighted the BOLA-DQB, BOLA-DQA5, CD1A, ß-defensins, PRG3, and ULBP21 genes. Enrichment analysis based on the gene list retrieved from the CNVRs disclosed over-represented terms (p < 0.01) strongly associated with immunity and cattle resilience to harsh environments. Additionally, QTL associated with body conformation and dairy-related traits were also unveiled within the CNVRs. These results provide better understanding of the selective forces shaping the genome of such cattle breeds and identify traces of natural selection pressures by which these populations have been exposed to challenging environmental conditions.


DNA Copy Number Variations , Genome , Cattle , Animals , Brazil , Phenotype , Whole Genome Sequencing/veterinary
5.
Anim Genet ; 53(5): 570-582, 2022 Oct.
Article En | MEDLINE | ID: mdl-35811456

This study aimed to integrate analyses of structural variations and differentially expressed genes (DEGs) associated with the beef fatty acid (FA) profile in Nellore cattle. Copy numbers variation (CNV) detection was performed using the penncnv algorithm and CNVRuler software in 3794 genotyped animals through the High-Density Bovine BeadChip. In order to perform the genomic wide association study (GWAS), a total of 963 genotyped animals were selected to obtain the intramuscular lipid concentration and quantify the beef FA profile. A total of 48 animals belonging to the same farm and management lot were extracted from the 963 genotyped and phenotyped animals to carry out the transcriptomic and differentially expressed gene analyses. The GWAS with extreme groups of FA profiles was performed using a logistic model. A total of 43, 42, 66 and 35 significant CNV regions (p < 0.05) for saturated, monounsaturated, polyunsaturated and omega 3 and 6 fatty acids were identified respectively. The paired-end sequencing of 48 samples was performed using the Illumina HiSeq2500 platform. Real-time quantitative PCR was used to validate the DEGs identified by RNA-seq analysis. The results showed several DEGs associated with the FA profile of Longissimus thoracis, such as BSCL2 and SAMD8. Enriched terms as the cellular response to corticosteroid (GO:0071384) and glucocorticoid stimulus (GO:0071385) could be highlighted. The identification of structural variations harboring candidate genes for beef FA must contribute to the elucidation of the genetic basis that determines the beef FA composition of intramuscular fat in Nellore cattle. Our results will contribute to the identification of potential biomarkers for complex phenotypes, such as the FA profile, to improve the reliability of the genomic predictions including pre-selected variants using differentiated weighting in the genomic models.


Fatty Acids , Animals , Cattle/genetics , Fatty Acids/analysis , Gene Expression , Genotype , Phenotype , Reproducibility of Results
6.
Vet Parasitol ; 301: 109640, 2022 Jan.
Article En | MEDLINE | ID: mdl-34973595

Infection caused by gastrointestinal nematodes is an important issue for animal health and production. Controlling worm infections improves the sustainability of the sheep industry. Genetic selection of animals that are resistant to gastrointestinal nematodes is another strategy to render sheep production more sustainable by decreasing the use of anthelmintics. The aims of this study were (1) to explore the additive-genetic pattern of EBVs for Famacha© (FAM), packed-cell volume (PVC), and fecal egg counts (FEC) of Santa Ines sheep, (2) to propose a classification of animals that are resistant, resilient and susceptible to gastrointestinal nematodes based on their additive-genetic patterns, and (3) to identify the most suitable animals for selection based on their genetic pattern. A dataset of 2,241 records from 747 animals was used to predict the breeding values for indicator traits of resistance to gastrointestinal nematodes with THRGIBBS1F90 and to carry out cluster analyses was used R software. Three clusters of animals were found in the population using hierarchical cluster analysis of the breeding values for FAM, PCV and FEC. Each cluster was characterized by different additive-genetic patterns identified by k-means non-hierarchical cluster analysis. Among a total of 747 animals, 196 were classified as resistant, 288 as resilient, and 263 as susceptible. Cluster analysis is a valuable tool for data screening that permits to evaluate only selection candidates based on their additive-genetic pattern for gastrointestinal nematode resistance. EBVs for FEC were decisive to divide the population into resilient, resistant and susceptible animals. It is also important to include the EBVs for PCV and FAM to adequately distinguish resistant from resilient animals. Finally, the resistant cluster consisted of the most desirable animals to be used as selection candidates in order to genetically improve resistance to infection with gastrointestinal nematodes. This cluster contained animals with the most appropriate additive-genetic pattern to achieve the breeding goal, with positive breeding values for PCV and negative breeding values for FAM and FEC.


Haemonchiasis , Haemonchus , Nematoda , Nematode Infections , Sheep Diseases , Animals , Cluster Analysis , Disease Susceptibility/veterinary , Feces , Haemonchiasis/veterinary , Nematoda/genetics , Nematode Infections/genetics , Nematode Infections/veterinary , Parasite Egg Count/veterinary , Sheep , Sheep Diseases/genetics
7.
J Therm Biol ; 99: 102998, 2021 Jul.
Article En | MEDLINE | ID: mdl-34420630

The objectives of this study were to measure the relative expression of the ATP1A1, NR3C1, POMC, NPY, and LEP genes in Caracu (Bos taurus) and Nelore (Bos indicus) bulls submitted to feed efficiency tests at high environmental temperatures, and to evaluate differences in adaptability to tropical conditions between breeds. Thirty-five Caracu and 30 Nelore bulls were submitted to a feed efficiency test using automated feeding stations. At the end of the test, the animals were subjected to thermoneutral (TN) and heat stress (HS) conditions. Blood samples were collected after the exposure to the TN and HS conditions and the relative expression of genes was measured by qPCR. The bulls exhibited lower expression of ATP1A1 in the HS condition than in the TN condition (1.98 ± 0.27 and 2.86 ± 0.26, P = 0.02), while the relative expression of NR3C1, POMC, and LEP did not differ (P > 0.05) between climatic conditions. The breed and feed intake influenced NPY and LEP expression levels (P < 0.05). Different climate conditions associated with residual feed intake can modify the gene expression patterns of ATP1A1 and NPY. The association observed among all genes studied shows that they are involved in appetite control. Bos taurus and Bos indicus bulls exhibited similar adaptability to tropical climate conditions.


Adaptation, Physiological/genetics , Cattle/genetics , Cattle/physiology , Eating , Heat-Shock Response/genetics , Animals , Gene Expression , Male
8.
J Anim Breed Genet ; 138(1): 80-90, 2021 Jan.
Article En | MEDLINE | ID: mdl-32424857

The aim of this study was to identify differentially expressed genes (DEG) in the Longissimus thoracis muscle of Nelore cattle related to fatty acid (FA) profile through RNA sequencing and principal component analysis (PCA). Two groups of 10 animals each were selected containing PC1 and PC2 extreme DEG values (HIGH × LOW) for each FA group. The intramuscular fat (IMF) was compared between cluster groups by ANOVA, and only the sum of monounsaturated FA (MUFA) and ω3 showed significant differences (p < .05). Interestingly, the highest percentage (95%) of phenotypic variation explained by the sum of the first two PC was observed for ω3, which also displayed the lowest number of DEG (n = 1). The lowest percentage (59%) was observed for MUFA, which also revealed the largest number of DEG (n = 66). Since only MUFA and ω3 exhibited significant differences between cluster groups, we can conclude that the differences observed for the remaining groups are not due to the percentage of IMF. Several genes that have been previously associated with meat quality and FA traits were identified as DEG in this study. The functional analysis revealed one KEGG pathway and eight GO terms as significant (p < .05), in which we highlighted the purine metabolism, glycolytic process, adenosine triphosphate binding and bone development. These results strongly contribute to the knowledge of the biological mechanisms involved in meat FA profile of Nelore cattle.


Muscle, Skeletal , Red Meat , Animals , Cattle , Fatty Acids , Phenotype , RNA-Seq/veterinary
9.
Trop Anim Health Prod ; 52(5): 2233-2241, 2020 Sep.
Article En | MEDLINE | ID: mdl-32125597

The climate-related problems that affect animal production in tropical countries have encouraged seeking solutions to increase herd productivity and one alternative is the use of breeds adapted to high-temperature environments. The objective of this study was to evaluate the effect of temperature on 77 Caracu and Nelore males submitted to three different environments: morning period (8:00 to 10:00 AM), afternoon in the sun, and afternoon in a shaded environment (11:00 AM to 1:00 PM). The following physiological parameters were measured in each treatment: heart and respiration rates, rectal and dorsal surface temperatures, and cortisol level. The data were analyzed with the MIXED procedure (SAS) and the model included the fixed effects of treatment (morning, sun, and shade), breed (Nelore and Caracu), month of measurement (December and February), and the interaction between effects. A higher dorsal surface temperature was observed in animals of both breeds in the sun treatment compared with the shade treatment. Caracu animals had a higher dorsal surface temperature than Nelore animals, which probably caused the higher rectal temperature observed in the sun treatment compared with the shade treatment in both breeds over the 2 months of the study. All physiological parameters measured in this study were efficient to detect the thermal stress in both breeds. Despite the variations in rectal temperature observed during the treatments, the animals of the two breeds exhibited no significant changes in heart rate, respiration rate, and cortisol level for the maintenance of thermal homeostasis. In conclusion, both breeds were considered tolerant to sun exposure, demonstrating adaptation of these animals to high-temperature environments, without evidence of harm to its health and welfare.


Body Temperature , Cattle/physiology , Heart Rate , Hydrocortisone/blood , Respiratory Rate , Thermotolerance , Animals , Hot Temperature , Male
10.
J Anim Breed Genet ; 137(2): 234-244, 2020 Mar.
Article En | MEDLINE | ID: mdl-31515857

Selection for bulls that would reach puberty early reduces the generation interval and increases fertility and herd productivity. Despite its economic importance, there are few QTL associated with age at puberty described in the literature. In this study, a weighted single-step genome-wide association study was performed to detect genomic regions and putative candidate genes related to age at puberty in young Nelore bulls. Several protein-coding genes related to spermatogenesis functions were identified within the genomic regions that explain more than 0.5% of the additive genetic variance for age at puberty in Nelore bulls, such as ADAM11, BRCA1, CSNK2A, CREBBP, MEIOC, NDRG2, NECTIN3, PARP2, PARP9, PRSS21, RAD51C, RNASE4, SLX4, SPA17, TEX14, TIMP2 and TRIP13 gene. Enrichment analysis by DAVID also revealed several GO terms related to spermatogenesis such as DNA replication (GO:0006260), male meiosis I (GO:0007141), double-strand break repair (GO:0006302), base excision repair (GO:0006284), apoptotic process (GO:0006915), cell-cell adhesion (GO: 0098609) and focal adhesion (GO:0005925). The heritability for age at puberty shows that this trait can be improved based on traditional EBV selection. Adding genomic information to the system helps to elucidate genes and molecular mechanisms controlling the sexual precocity and could help to predict sexual precocity in Nelore bulls with greater accuracy at younger age, which would speed up the breeding programme for this breed.


Cattle/genetics , Reproduction/genetics , Sexual Maturation/genetics , Animals , Breeding , Cattle/physiology , Chromosome Mapping/veterinary , Genetic Variation , Genome-Wide Association Study/veterinary , Genomics , Genotype , Male , Multifactorial Inheritance , Phenotype , Polymorphism, Single Nucleotide , Quantitative Trait Loci
11.
J Anim Breed Genet ; 137(2): 155-165, 2020 Mar.
Article En | MEDLINE | ID: mdl-31397015

The aim of this study was to assess the distribution of runs of homozygosity (ROH) and autozygosity islands in the composite Montana Tropical® beef cattle to explore hotspot regions which could better characterize the different biological types within the composite breed. Montana animals (n = 1,436) were genotyped with the GGP-LD BeadChip (~30,000 markers). ROH was identified in every individual using the plink v1.90 software. Medium and long ROH prevailed in the genome, which accounted for approximately 74% of all ROH detected. On an average, 2.0% of the genome was within ROH, agreeing with the pedigree-based inbreeding coefficient. The Montana cattle with a higher proportion of productive breed types showed the highest number of autozygosity islands (n = 17), followed by those with a higher proportion of breeds adapted to tropical environments (n = 15). Enriched terms (p < .05) associated with the immune and inflammatory response, homeostasis, reproduction, mineral absorption, and lipid metabolism were described within the autozygosity islands. In this regard, over-represented GO terms and KEGG pathways described in this population may play a key role in providing information to explore the genetic and biological mechanisms together with the genomic regions underlying each biological type that favoured their optimal performance ability in tropical and subtropical regions.


Breeding , Cattle/genetics , Genome/genetics , Homozygote , Animals , Genotype , Hybrid Vigor/genetics , Linkage Disequilibrium , Pedigree , Phenotype , Polymorphism, Single Nucleotide , Population Density , Red Meat/analysis , Selection, Genetic
12.
BMC Genomics ; 20(1): 321, 2019 Apr 27.
Article En | MEDLINE | ID: mdl-31029102

BACKGROUND: In this study we integrated the CNV (copy number variation) and WssGWAS (weighted single-step approach for genome-wide association) analyses to increase the knowledge about number of piglets born alive, an economically important reproductive trait with significant impact on production efficiency of pigs. RESULTS: A total of 3892 samples were genotyped with the Porcine SNP80 BeadChip. After quality control, a total of 57,962 high-quality SNPs from 3520 Duroc pigs were retained. The PennCNV algorithm identified 46,118 CNVs, which were aggregated by overlapping in 425 CNV regions (CNVRs) ranging from 2.5 Kb to 9718.4 Kb and covering 197 Mb (~ 7.01%) of the pig autosomal genome. The WssGWAS identified 16 genomic regions explaining more than 1% of the additive genetic variance for number of piglets born alive. The overlap between CNVR and WssGWAS analyses identified common regions on SSC2 (4.2-5.2 Mb), SSC3 (3.9-4.9 Mb), SSC12 (56.6-57.6 Mb), and SSC17 (17.3-18.3 Mb). Those regions are known for harboring important causative variants for pig reproductive traits based on their crucial functions in fertilization, development of gametes and embryos. Functional analysis by the Panther software identified 13 gene ontology biological processes significantly represented in this study such as reproduction, developmental process, cellular component organization or biogenesis, and immune system process, which plays relevant roles in swine reproductive traits. CONCLUSION: Our research helps to improve the understanding of the genetic architecture of number of piglets born alive, given that the combination of GWAS and CNV analyses allows for a more efficient identification of the genomic regions and biological processes associated with this trait in Duroc pigs. Pig breeding programs could potentially benefit from a more accurate discovery of important genomic regions.


Genome-Wide Association Study , Animals , Animals, Newborn , Chromosome Mapping , DNA Copy Number Variations , Genotype , Phenotype , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Swine
13.
BMC Genomics ; 19(1): 680, 2018 Sep 17.
Article En | MEDLINE | ID: mdl-30223795

BACKGROUND: The aim of this study was to assess genome-wide autozygosity in a Nellore cattle population and to characterize ROH patterns and autozygosity islands that may have occurred due to selection within its lineages. It attempts also to compare estimates of inbreeding calculated from ROH (FROH), genomic relationship matrix (FGRM), and pedigree-based coefficient (FPED). RESULTS: The average number of ROH per animal was 55.15 ± 13.01 with an average size of 3.24 Mb. The Nellore genome is composed mostly by a high number of shorter segments accounting for 78% of all ROH, although the proportion of the genome covered by them was relatively small. The genome autozygosity proportion indicates moderate to high inbreeding levels for classical standards, with an average value of 7.15% (178.70 Mb). The average of FPED and FROH, and their correlations (- 0.05 to 0.26) were low. Estimates of correlation between FGRM-FPED was zero, while the correlation (- 0.01 to - 0.07) between FGRM-FROH decreased as a function of ROH length, except for FROH > 8Mb (- 0.03). Overall, inbreeding coefficients were not high for the genotyped animals. Autozygosity islands were evident across the genome (n = 62) and their genomic location did not largely differ within lineages. Enriched terms (p < 0.01) associated with defense response to bacteria (GO:0042742), immune complex reaction (GO:0045647), pregnancy-associated glycoproteins genes (GO:0030163), and organism growth (GO:0040014) were described within the autozygotic islands. CONCLUSIONS: Low FPED-FROH correlation estimates indicate that FPED is not the most suitable method for capturing ancient inbreeding when the pedigree does not extend back many generations and FROH should be used instead. Enriched terms (p < 0.01) suggest a strong selection for immune response. Non-overlapping islands within the lineages greatly explain the mechanism underlying selection for functionally important traits in Nellore cattle.


Cattle/genetics , Homozygote , Inbreeding , Animals , Brazil , Genetic Linkage , Genome , Genomics/methods , Genotype , Male , Pedigree , Phenotype , Polymorphism, Single Nucleotide
14.
PLoS One ; 13(8): e0202978, 2018.
Article En | MEDLINE | ID: mdl-30161212

The causal mutation for polledness in Nelore (Bos taurus indicus) breed seems to have appeared first in Brazil in 1957. The expression of the polled trait is known to be ruled by a few groups of alleles in taurine breeds; however, the genetic basis of this trait in indicine cattle is still unclear. The aim of this study was to identify genomic regions associated with the hornless trait in a commercial Nelore population. A total of 107,294 animals had phenotypes recorded and 2,238 were genotyped/imputed for 777k SNP. The weighted single-step approach for genome-wide association study (WssGWAS) was used to estimate the SNP effects and variances accounted for by 1 Mb sliding SNP windows. A centromeric region of chromosome 1 with 3.11 Mb size (BTA1: 878,631-3,987,104 bp) was found to be associated with hornless in the studied population. A total of 28 protein-coding genes are mapped in this region, including the taurine Polled locus and the IFNAR1, IFNAR2, IFNGR2, KRTAP11-1, MIS18A, OLIG1, OLIG2, and SOD1 genes, which expression can be related to the horn formation as described in literature. The functional enrichment analysis by DAVID tool revealed cytokine-cytokine receptor interaction, JAK-STAT signaling, natural killer cell mediated cytotoxicity, and osteoclast differentiation pathways as significant (P < 0.05). In addition, a runs of homozygosity (ROH) analysis identified a ROH island in polled animals with 2.47 Mb inside the region identified by WssGWAS. Polledness in Nelore cattle is associated with one region in the genome with 3.1 Mb size in chromosome 1. Several genes are harbored in this region, and they may act together in the determination of the polled/horned phenotype. Fine mapping the locus responsible for polled trait in Nelore breed and the identification of the molecular mechanisms regulating the horn growth deserve further investigation.


Cattle/growth & development , Cattle/genetics , Horns/growth & development , Animals , Breeding , Genome-Wide Association Study , Homozygote , Male , Phenotype , Polymorphism, Single Nucleotide , Red Meat
15.
PLoS One ; 13(8): e0200694, 2018.
Article En | MEDLINE | ID: mdl-30071036

Gir is one of the main cattle breeds raised in tropical South American countries. Strong artificial selection through its domestication resulted in increased genetic differentiation among the countries in recent years. Over the years, genomic studies in Gir have become more common. However, studies of population structure and signatures of selection in divergent Gir populations are scarce and need more attention to better understand genetic differentiation, gene flow, and genetic distance. Genotypes of 173 animals selected for growth traits and 273 animals selected for milk production were used in this study. Clear genetic differentiation between beef and dairy populations was observed. Different criteria led to genetic divergence and genetic differences in allele frequencies between the two populations. Gene segregation in each population was forced by artificial selection, promoting isolation, and increasing genetic variation between them. Results showed evidence of selective forces in different regions of the genome. A total of 282 genes were detected under selection in the test population based on the fixation index (Fst), integrated haplotype score (iHS), and cross-population extend haplotype homozygosity (XP-EHH) approaches. The QTL mapping identified 35 genes associated with reproduction, milk composition, growth, meat and carcass, health, or body conformation traits. The investigation of genes and pathways showed that quantitative traits associated to fertility, milk production, beef quality, and growth were involved in the process of differentiation of these populations. These results would support further investigations of population structure and differentiation in the Gir breed.


Genome , Selection, Genetic/genetics , Animals , Cattle , Chromosome Mapping , Genetic Variation , Genomics/methods , Genotype , Haplotypes , Polymorphism, Single Nucleotide , Population Density , Principal Component Analysis , South America
16.
J Appl Genet ; 59(2): 203-223, 2018 May.
Article En | MEDLINE | ID: mdl-29520708

The aim of this study was to analyze the association between the copy number variation regions (CNVRs) and fatty acid profile phenotypes for saturated (SFA), monosaturated (MUFA), polyunsaturated (PUFA), ω6 and ω3 fatty acids, PUFA/SFA and ω6/ω3 ratios, as well as for their sums, in Nellore cattle (Bos primigenius indicus). A total of 963 males were finished in feedlot and slaughtered with approximately 2 years of age. Animals were genotyped with the BovineHD BeadChip (Illumina Inc., San Diego, CA, USA). The copy number variation (CNV) detection was performed using the PennCNV algorithm. Log R ratio (LRR) and allele B frequency (BAF) were used to estimate the CNVs. The association analyses were done using the CNVRuler software and applying a logistic regression model. The phenotype was adjusted using a linear model considering the fixed effects of contemporary group and the animal age at slaughter. The fatty acid profile was analyzed on samples of longissimus thoracis muscle using gas chromatography with a 100-m capillary column. For the association analysis, the adjusted phenotypic values were considered for the traits, while the data was adjusted for the effects of the farm and year of birth, management groups at birth, weaning, and superannuation. A total of 186 CNVRs were significant for SFA (43), MUFA (42), PUFA (66), and omega fatty acid (35) groups, totaling 278 known genes. On the basis of the results, several genes were associated with several fatty acids of different saturations. Olfactory receptor genes were associated with C12:0, C14:0, and C18:0 fatty acids. The SAMD8 and BSCL2 genes, both related to lipid metabolic process, were associated with C12:0. The RAPGEF6 gene was found to be associated with C18:2 cis-9 cis-12 n-6, and its function is related to regulation of GTPase activity. Among the results, we highlighted the olfactory receptor activity (GO:0004984), G-protein-coupled receptor activity (GO:0004930), potassium:proton antiporter activity (GO:0015386), sodium:proton antiporter activity (GO:0015385), and odorant-binding (GO:0005549) molecular functions. A large number of genes associated with fatty acid profile within the CNVRs were identified in this study. These findings must contribute to better elucidate the genetic mechanism underlying the fatty acid profile of intramuscular fat in Nellore cattle.


Cattle/genetics , DNA Copy Number Variations , Fatty Acids/analysis , Red Meat , Animals , Gene Frequency , Genotype , Male , Muscle, Skeletal/chemistry , Oligonucleotide Array Sequence Analysis , Phenotype , Polymorphism, Single Nucleotide
17.
BMC Genomics ; 19(1): 34, 2018 01 09.
Article En | MEDLINE | ID: mdl-29316879

BACKGROUND: Runs of homozygosity (ROH) are continuous homozygous segments of the DNA sequence. They have been applied to quantify individual autozygosity and used as a potential inbreeding measure in livestock species. The aim of the present study was (i) to investigate genome-wide autozygosity to identify and characterize ROH patterns in Gyr dairy cattle genome; (ii) identify ROH islands for gene content and enrichment in segments shared by more than 50% of the samples, and (iii) compare estimates of molecular inbreeding calculated from ROH (FROH), genomic relationship matrix approach (FGRM) and based on the observed versus expected number of homozygous genotypes (FHOM), and from pedigree-based coefficient (FPED). RESULTS: ROH were identified in all animals, with an average number of 55.12 ± 10.37 segments and a mean length of 3.17 Mb. Short segments (ROH1-2 Mb) were abundant through the genomes, which accounted for 60% of all segments identified, even though the proportion of the genome covered by them was relatively small. The findings obtained in this study suggest that on average 7.01% (175.28 Mb) of the genome of this population is autozygous. Overlapping ROH were evident across the genomes and 14 regions were identified with ROH frequencies exceeding 50% of the whole population. Genes associated with lactation (TRAPPC9), milk yield and composition (IRS2 and ANG), and heat adaptation (HSF1, HSPB1, and HSPE1), were identified. Inbreeding coefficients were estimated through the application of FROH, FGRM, FHOM, and FPED approaches. FPED estimates ranged from 0.00 to 0.327 and FROH from 0.001 to 0.201. Low to moderate correlations were observed between FPED-FROH and FGRM-FROH, with values ranging from -0.11 to 0.51. Low to high correlations were observed between FROH-FHOM and moderate between FPED-FHOM and FGRM-FHOM. Correlations between FROH from different lengths and FPED gradually increased with ROH length. CONCLUSIONS: Genes inside ROH islands suggest a strong selection for dairy traits and enrichment for Gyr cattle environmental adaptation. Furthermore, low FPED-FROH correlations for small segments indicate that FPED estimates are not the most suitable method to capture ancient inbreeding. The existence of a moderate correlation between larger ROH indicates that FROH can be used as an alternative to inbreeding estimates in the absence of pedigree records.


Cattle/genetics , Genomics/methods , Homozygote , Inbreeding , Lactation/genetics , Animals , Female , Milk , Phenotype , Polymorphism, Single Nucleotide
18.
Article En | MEDLINE | ID: mdl-28878894

BACKGROUND: The aim of this study was to estimate variance components and to identify genomic regions and pathways associated with resistance to gastrointestinal parasites, particularly Haemonchus contortus, in a breed of sheep adapted to tropical climate. Phenotypes evaluations were performed to verify resistance to gastrointestinal parasites, and were divided into two categories: i) farm phenotypes, assessing body condition score (BCS), degree of anemia assessed by the famacha chart (FAM), fur score (FS) and feces consistency (FC); and ii) lab phenotypes, comprising blood analyses for hematocrit (HCT), white blood cell count (WBC), red blood cell count (RBC), hemoglobin (HGB), platelets (PLT) and transformed (log10) egg per gram of feces (EPGlog). A total of 576 animals were genotyped with the Ovine SNP12k BeadChip (Illumina, Inc.), that contains 12,785 bialleleic SNP markers. The variance components were estimated using a single trait model by single step genomic BLUP procedure. RESULTS: The overall linkage disequilibrium (LD) mean between pairs of markers measured by r2 was 0.23. The overall LD mean between markers considering windows up to 10 Mb was 0.07. The mean LD between adjacent SNPs across autosomes ranged from 0.02 to 0.10. Heritability estimates were low for EPGlog (0.11), moderate for RBC (0.18), PLT (0.17) HCT (0.20), HGB (0.16) and WBC (0.22), and high for FAM (0.35). A total of 22, 21, 23, 20, 26, 25 and 23 windows for EPGlog for FAM, WBC, RBC, PLT, HCT and HGB traits were identified, respectively. Among the associated windows, 10 were shown to be common to HCT and HGB traits on OAR1, OAR2, OAR3, OAR5, OAR8 and OAR15. CONCLUSION: The traits indicating gastrointestinal parasites resistance presented an adequate genetic variability to respond to selection in Santa Inês breed, and it is expected a higher genetic gain for FAM trait when compared to the others. The level of LD estimated for markers separated by less than 1 Mb indicated that the Ovine SNP12k BeadChip might be a suitable tool for identifying genomic regions associated with traits related to gastrointestinal parasite resistance. Several candidate genes related to immune system development and activation, inflammatory response, regulation of lymphocytes and leukocytes proliferation were found. These genes may help in the selection of animals with higher resistance to parasites.

19.
Article En | MEDLINE | ID: mdl-28852499

BACKGROUND: Beef cattle breeding programs in Brazil have placed greater emphasis on the genomic study of reproductive traits of males and females due to their economic importance. In this study, genome-wide associations were assessed for scrotal circumference at 210 d of age, scrotal circumference at 420 d of age, age at first calving, and age at second calving, in Canchim beef cattle. Data quality control was conducted resulting in 672,778 SNPs and 392 animals. RESULTS: Associated SNPs were observed for scrotal circumference at 420 d of age (435 SNPs), followed by scrotal circumference at 210 d of age (12 SNPs), age at first calving (six SNPs), and age at second calving (four SNPs). We investigated whether significant SNPs were within genic or surrounding regions. Biological processes of genes were associated with immune system, multicellular organismal process, response to stimulus, apoptotic process, cellular component organization or biogenesis, biological adhesion, and reproduction. CONCLUSIONS: Few associations were observed for scrotal circumference at 210 d of age, age at first calving, and age at second calving, reinforcing their polygenic inheritance and the complexity of understanding the genetic architecture of reproductive traits. Finding many associations for scrotal circumference at 420 d of age in various regions of the Canchim genome also reveals the difficulty of targeting specific candidate genes that could act on fertility; nonetheless, the high linkage disequilibrium between loci herein estimated could aid to overcome this issue. Therefore, all relevant information about genomic regions influencing reproductive traits may contribute to target candidate genes for further investigation of causal mutations and aid in future genomic studies in Canchim cattle to improve the breeding program.

20.
PLoS One ; 12(3): e0173954, 2017.
Article En | MEDLINE | ID: mdl-28323836

Whole-genome re-sequencing, alignment and annotation analyses were undertaken for 12 sires representing four important cattle breeds in Brazil: Guzerat (multi-purpose), Gyr, Girolando and Holstein (dairy production). A total of approximately 4.3 billion reads from an Illumina HiSeq 2000 sequencer generated for each animal 10.7 to 16.4-fold genome coverage. A total of 27,441,279 single nucleotide variations (SNVs) and 3,828,041 insertions/deletions (InDels) were detected in the samples, of which 2,557,670 SNVs and 883,219 InDels were novel. The submission of these genetic variants to the dbSNP database significantly increased the number of known variants, particularly for the indicine genome. The concordance rate between genotypes obtained using the Bovine HD BeadChip array and the same variants identified by sequencing was about 99.05%. The annotation of variants identified numerous non-synonymous SNVs and frameshift InDels which could affect phenotypic variation. Functional enrichment analysis was performed and revealed that variants in the olfactory transduction pathway was over represented in all four cattle breeds, while the ECM-receptor interaction pathway was over represented in Girolando and Guzerat breeds, the ABC transporters pathway was over represented only in Holstein breed, and the metabolic pathways was over represented only in Gyr breed. The genetic variants discovered here provide a rich resource to help identify potential genomic markers and their associated molecular mechanisms that impact economically important traits for Gyr, Girolando, Guzerat and Holstein breeding programs.


Cattle/genetics , INDEL Mutation , Polymorphism, Single Nucleotide , Animals , Brazil , Breeding , Cattle/classification , Female , Genotype , High-Throughput Nucleotide Sequencing/veterinary , Male , Molecular Sequence Annotation , Oligonucleotide Array Sequence Analysis/veterinary , Sequence Analysis, DNA/veterinary , Species Specificity
...